With the growing global deployment of carbon capture and sequestration technology to combat climate change, monitoring and detection of potential CO2 leakage through existing or storage induced faults are critical to the safe and long-term viability of the technology. Recent work on time-lapse seismic monitoring of CO2 storage has shown promising results in its ability to monitor the growth of the CO2 plume from surface recorded seismic data. However, due to the low sensitivity of seismic imaging to CO2 concentration, additional developments are required to efficiently interpret the seismic images for leakage. In this work, we introduce a binary classification of time-lapse seismic images to delineate CO2 plumes (leakage) using state-of-the-art deep learning models. Additionally, we localize the leakage region of CO2 plumes by leveraging Class Activation Mapping methods.
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译
我们建议使用贝叶斯推理和深度神经网络的技术,将地震成像中的不确定性转化为图像上执行的任务的不确定性,例如地平线跟踪。地震成像是由于带宽和孔径限制,这是一个不良的逆问题,由于噪声和线性化误差的存在而受到阻碍。但是,许多正规化方法,例如变形域的稀疏性促进,已设计为处理这些错误的不利影响,但是,这些方法具有偏向解决方案的风险,并且不提供有关图像空间中不确定性的信息以及如何提供信息。不确定性会影响图像上的某些任务。提出了一种系统的方法,以将由于数据中的噪声引起的不确定性转化为图像中自动跟踪视野的置信区间。不确定性的特征是卷积神经网络(CNN)并评估这些不确定性,样品是从CNN权重的后验分布中得出的,用于参数化图像。与传统先验相比,文献中认为,这些CNN引入了灵活的感应偏见,这非常适合各种问题。随机梯度Langevin动力学的方法用于从后验分布中采样。该方法旨在处理大规模的贝叶斯推理问题,即具有地震成像中的计算昂贵的远期操作员。除了提供强大的替代方案外,最大的后验估计值容易过度拟合外,访问这些样品还可以使我们能够在数据中的噪声中转换图像中的不确定性,以便在跟踪的视野上不确定性。例如,它承认图像上的重点标准偏差和自动跟踪视野的置信区间的估计值。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The NASA Astrophysics Data System (ADS) is an essential tool for researchers that allows them to explore the astronomy and astrophysics scientific literature, but it has yet to exploit recent advances in natural language processing. At ADASS 2021, we introduced astroBERT, a machine learning language model tailored to the text used in astronomy papers in ADS. In this work we: - announce the first public release of the astroBERT language model; - show how astroBERT improves over existing public language models on astrophysics specific tasks; - and detail how ADS plans to harness the unique structure of scientific papers, the citation graph and citation context, to further improve astroBERT.
translated by 谷歌翻译
使用生成的对抗神经网络和更精确的周期内,无监督和不配对的域翻译是组织病理学图像的染色翻译的最新技术。然而,它通常遭受循环一致但非结构保存错误的存在。我们为一组方法提出了一种替代方法,该方法依赖于分割一致性,可以保留病理结构。专注于免疫组织化学(IHC)和多重免疫荧光(MIF),我们引入了一种简单而有效的指导方案,作为一种损失函数,以利用污渍翻译和染色隔离的一致性。定性和定量实验显示了提出的方法改善两个域之间翻译的能力。
translated by 谷歌翻译
口语语言理解(SLU)任务涉及从语音音频信号映射到语义标签。鉴于此类任务的复杂性,可能预期良好的性能需要大量标记的数据集,这很难为每个新任务和域收集。但是,最近的自我监督讲话表现的进步使得考虑使用有限标记的数据学习SLU模型是可行的。在这项工作中,我们专注于低资源讨论(ner)并解决问题:超越自我监督的预培训,我们如何使用未为任务注释的外部语音和/或文本数据?我们借鉴了各种方法,包括自我训练,知识蒸馏和转移学习,并考虑其对端到端模型和管道(语音识别后跟文本型号)的适用性。我们发现,这些方法中的几种方法可以在资源受限的环境中提高绩效,超出了训练有素的表示的福利。与事先工作相比,我们发现改进的F1分数高达16%。虽然最好的基线模型是一种管道方法,但使用外部数据时最终通过端到端模型实现的最佳性能。我们提供了详细的比较和分析,例如,端到端模型能够专注于更加立列人的单词。
translated by 谷歌翻译
用于探索美国国家航空航天局的搜索工具(广告)可以相当丰富和赋予(例如,类似和趋势的运营商),但研究人员尚未允许完全杠杆语义搜索。例如,对“普朗克任务的结果”查询应该能够区分普朗克(人,任务,常量,机构和更多)的所有各种含义,而无需从用户进一步澄清。在广告中,我们正在将现代机器学习和自然语言处理技术应用于我们最近的天文出版物的数据集,以培训Astrobert,这是一种基于Google研究的深刻语境语言模型。使用AstrBert,我们的目标是丰富广告数据集并提高其可发现性,特别是我们正在开发自己的命名实体识别工具。我们在这里展示我们初步的结果和经验教训。
translated by 谷歌翻译
通过共享数据集和基准,已经促进了语音处理的进展。历史上,这些都集中在自动语音识别(ASR),扬声器标识或其他较低级别的任务上。兴趣在更高层次的口语中越来越多,理解任务,包括使用端到端模型,但是此类任务的注释数据集较少。与此同时,最近的工作显示了预先培训通用表示的可能性,然后使用相对较少标记的数据进行微调的多个任务。我们建议为口语语言理解(屠宰)创建一套基准任务,由有限尺寸标记的培训集和相应的评估集组成。该资源将允许研究界跟踪进度,评估高级任务的预先接受预期的表示,并研究开放的问题,例如管道与端到端方法的实用性。我们介绍了雪橇基准套件的第一阶段,包括指定实体识别,情感分析和相应数据集上的ASR。我们专注于自然产生的(未读取或综合)语音和自由可用的数据集。我们为VoxceReb和Voxpopuli数据集的子集提供新的转录和注释,基线模型的评估指标和结果,以及重现基线的开源工具包,并评估新模型。
translated by 谷歌翻译
我们提出了一种数据驱动的方法来表征模型参数的非识别性,并通过动态和稳定的动力学模型来说明它。通过采用扩散图及其扩展,我们发现了表征化学系统输出行为所需的参数的最小组合:该模型的一组有效参数。此外,我们介绍和使用保形自动编码器神经网络技术以及基于内核的共同光滑函数技术,以解散不会影响输出行为的冗余参数组合。我们讨论了数据驱动的有效参数的解释性,并演示了该方法的实用性,以进行行为预测和参数估计。在后一个任务中,描述与特定输出行为一致的参数空间中的级别集变得重要。我们在多站点磷酸化模型上验证了我们的方法,该模型先前已经通过分析建立了一组有效参数集(物理组合的非线性组合)。
translated by 谷歌翻译